当前位置: 小升初网 > 奥数 > 正文

高难度牛吃草问题例题

2018-04-13 20:26:41  来源: 小升初网     阅读次数:
字号:

196.jpg

   1.一块牧场长满了草,每天均匀生长。这块牧场的草可供10头牛吃40天,供15头牛吃20天。可供25头牛吃__天。                     
  A. 10     B. 5     C. 20
  解析:假设1头牛1天吃草的量为1份。每天新生的草量为:(10×40-15×20)÷(40-20)=5(份)。那么愿草量为:10×40-40×5=200(份),安排5头牛专门吃每天新长出来的草,这块牧场可供25头牛吃:200÷(25-5)=10(天)。
  2.一块草地上的草以均匀的速度生长,如果20只羊5天可以将草地上的草和新长出的草全部吃光,而14只羊则要10天吃光。那么想用4天的时间,把这块草地的草吃光,需要__只羊。                                           
  A. 22     B. 23     C. 24
  解析:假设1只羊1天吃草的量为1份。每天新生草量是:(14×10-20×5)÷(10-5)=8(份)原草量是:20×5-8×5=60(份)安排8只羊专门吃每天新长出来的草,4天时间吃光这块草地共需羊:60÷4+8=23(只)
  3.画展9时开门,但早有人来排队等候入场。从第一个观众来到时起,每分钟来的观众人数一样多。如果开3个入场口,9点9分就不再有人排队了,那么第一个观众到达的时间是8点__分。                                   
  A. 10      B. 12     C. 15
  解析:假设每个人口每分钟进入的观众量是1份。每分钟来的观众人数为(3×9-5×5)÷(9-5)=0.5(份),到9时止,已来的观众人数为:3×9-0.5×9=22.5(份),第一个观众来到时比9时提前了:22.5÷0.5=45(分),所以第一个观众到达的时间是9时-45分=8时15分。
  4.有一片草地,每天都在匀速生长,这片草可供16头牛吃20天,可供80只羊吃12天。如果一头牛的吃草量等于4只羊的吃草量,那么10头牛与60只羊一起吃可以吃多少天?
  解析:(1)按牛的吃草量来计算,80只羊相当于80÷4=20(头)牛。(2)设1头牛1天的吃草量为1份。(3)先求出这片草地每天新生长的草量:(16×20-20×12)÷(20-12)=10(份)(4)再求出草地上原有的草量:16×20-10×20=120(份)(5)最后求出10头牛与60只羊一起吃的天数:120÷(10+60÷4-10)=8(天)。
  5. 现有速度不变的甲、乙两车,如果甲车以现在速度的2倍去追乙车,5小时后能追上,如果甲车以现在的速度去追乙车,3小时后能追上。那么甲车以现在的速度去追,几小时后能追上乙车?
  解析:设甲车现在的速度为每小时行单位"1",那么乙车的速度为:(2×5-3×3)÷(5-3)=0.5
  乙车原来与甲车的距离为:2×5-0.5×5=7.5
  所以甲车以现在的速度去追,追及的时间为:7.5÷(1-0.5)=15(小时)

  例1.由于天气逐渐变冷,牧场上的草每天以固定的速度在减少,经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天。那么,可供11头牛吃几天?

  解答:设一头牛一天吃的草量为一份。牧场每天减少的草量:(20×5-16×6)÷(6-5)=4份,原来的草量:(20+4)×5=120份,可供11头牛吃120÷(11+4)=8天。

  总结:想办法从变化中找到不变的量。牧场上原有的草是不变的,新长出的草虽然在变化,但是因为是匀速生长,所以每天新长出的草量也是不变的。正确计算草地上原有的草及每天新长出的草,问题就会迎刃而解。

  知识衍变

  牛吃草基本问题就先介绍到这,希望大家掌握这种方法,以后出现样吃草问题,驴吃草问题也知道怎么做,甚至,以下这些问题都可以应用牛吃草问题解决方法。

  例2.自动扶梯以均匀速度由下往上行驶,小明和小丽从扶梯上楼,已知小明每分钟走25级台阶,小丽每分钟走20级台阶,结果小明用了5分钟,小丽用了6分钟分别到达楼上。该扶梯共有多少级台阶?

  【分析】在这道题中,"总的草量"变成了"扶梯的台阶总级数","草"变成了"台阶","牛"变成了"速度",所以也可以看成是"牛吃草"问题来解答。

  例3.两只蜗牛同时从一口井的井顶爬向井底。白天往下爬,两只蜗牛的爬行速度是不同的,一只每天爬行20分米,另一只每天爬行15分米。黑夜往下滑,两只蜗牛滑行的速度却是相同的,结果一只蜗牛恰好用了5个昼夜到达井底,另一只恰好用了6个昼夜到达井底。那么,井深多少米?

  大家说这里什么是牛?什么是草?都什么是不变的?

  解答:蜗牛每夜下降:(20×5-15×6)÷(6-5)=10分米,所以井深:(20+10)×5=150分米=15米

  例4.一个水池,池底有泉水不断涌出,用10部抽水机20小时可以把水抽干,用15部相同的抽水机10小时可把水抽干。那么用25部这样的抽水机多少小时可以把水抽干?

  解答:设一台抽水机一小时抽水一份。则每小时涌出的水量是:(20×10-15×10)÷(20-10)=5份,池内原有的水是:(10-5)×20=100份.所以,用25部抽水机需要:100÷(25-5)=5小时

  思维拓展

  例5.一个牧场上的青草每天都匀速生长。这片青草可供27头牛吃6天,或供23头牛吃9天,现有一群牛吃了4天后卖掉2头,余下的牛又吃了4天将草吃完。这群牛原来有多少头?

  解答:设每头牛每天的吃草量为1份。每天新生的草量为:(23×9-27×6)÷(20-10)=15份,原有的草量为(27-15)×6=72份。如两头牛不卖掉,这群牛在4+4=8天内吃草量72+15×8+2×4=200份。所以这群牛原来有200÷8=25头。